

Imagination

MIPS CPUs: Differentiating the Next Wave of Innovation

Mark Throndson MIPS Business Development

www.imgtec.com

Overview

MIPS overview

- Hardware architecture better than ever
- Software tools and OS support stronger than ever
- Ecosystem stronger and bigger than ever
- Leadership in embedded
 - Bringing hardware-enforced security to embedded MCUs
- Unique features
 - Virtualization from high end to low end; multi-threading; advanced Power Management

Scaling to multicore

There's more than one way – with MIPS

-

MIPS "Warrior" Proven MIPS architecture P-Class Ultimate Total compatibility $32 \Rightarrow 64$ -bit Performance Hardware virtualization in all cores **MIPS "Aptiv"** proAptiv **MIPS "Classic"** MIPS "Warrior" Superior multi-domain security I-Class 1074K Hardware multi-threading Powerful & 74K interAptiv Efficient Compiler-aware 128-bit SIMD Advanced SP/DP FPU 1004K MIPS "Warrior" microAptiv M-Class Consistent tool chains 34K Ultimate Extensive 64 & 32-bit ecosystems Embedded M14K/M14KC

MIPS IP core portfolio

A proven, efficient 64/32bit architecture - 5 generations over 30 years...

MIPS Architectures

Release Updates

MIPS by Imagination

C Imagination

© Imagination Technologies

MIPS32/64 Architectures and Release 6

- Instructions MIPS64
- dealing with
 - 64-bit data
- Is MIPS32, plus instructions for 64-bit data types
- Runs MIPS32 software without mode switching

MIPS64/32 Release 6

- Streamlining a highly efficient architecture
- Modernization of architecture through:
 - Additional instructions for enhanced execution on modern software workloads =
 - JITs, VMs, PIC, etc. commonly found in Javascript, Browsers, abstracted compiler technologies (i.e. LLVM)

MIPS: the ultimate 64/32-bit architecture

Comprehensive tools for every aspect of your development

Codescape SDK integrates all the components

Complete Software Development Kit

© Imagination Technologies

MIPS communities are growing

prpl: at the heart of MIPS open source

Virtualization & Security

To enable multi-tenant, secure software environments in datacenter, networking and storage, home, mobile and embedded

© Imagination Technologies

Heterogeneous **Computing**

To leverage heterogeneous architectures and compute resources enabling efficient processing for applications such as big data analytics

www.prplfoundation.org

Portability

To create ISA agnostic software for rapid deployment across multiple architectures

magination

OmniShield and MIPS

HW Virtualization is the foundation

- Virtualization is a SW concept what CPU HW enhances support?
 - A new privilege level (*Root*) in the architecture:

- New CP0 registers for management, control and extended functionality for Guests
- New instructions for Root-privilege Read/Write/Invalidate of Guest resources
 CP0 context, TLB
- Extension of TLB/MMU resources for Guest/Root assignment

HW virtualization top to bottom core lineup MIPS

Only MIPS implements Virtualization for Embedded MCUs!

- 16-stage SuperScalar (SS) Out-of-Order (OoO) Multi-core CPUUp to 15 guests
- 9-stage SuperScalar (SS) Multi-Threaded Multi-core CPU

Up to 31 guests

- 5-stage MCU and embedded MPU cores
- Up to 7 guests

OmniShield

by Imagination

by Imagination

Virtualization & HW multi-threading

Unique features making MIPS the better choice

- GPR Shadow Register Sets (SRSs) replication(s) of primary GPR set
 - Supported in M-class M5100/M5150 with hardware VZ, up to 16 SRSs
 - Enables low latency, fast context switch for high priority interrupts and exception handling
 - Real time response works across guest domains, preserving low latency and deterministic response without hypervisor intervention

Hardware Multi-Threading – replicate(s) full CPU context, plus scheduling

- Supported in I-class I6400 with hardware VZ, up to 4 threads (Virtual Processors) per core
- Enables Guests <-> VPs assignment secures execution of each thread
- Guest domain execution can switch on a clock cycle by cycle basis, and...
- Each superscalar I6400 core can run code for multiple Guests simultaneously per cycle

Virtualization and HW multi-threading in action Intersection of isolation and concurrency

Concurrent multi-domain execution environment

zero overhead + real-time response

C Imagination

© Imagination Technologies

Asia Summits September 2015 12

Scaling multicore to 8 (& more)

Useful processor performance

- Are 8 cores useful for AP function?
 - Questionable, at best...

Imagination

But it has become a marketing feature

What if the cost for 8 CPUs could be reduced?

- Traditional approach: Dual guad core clusters
- Alternative: Use HW Multi-Threading to reduce the number of cores
 - Quad core cluster with 2 threads/core = 8 CPUs
 - 4 Cores = plenty of real app performance
 - Configs shown have 2MB or 1MB of L2\$

Advanced Power Management

Dynamic Clocking <u>Per CPU</u>

- One Main clock to CPC
- CPC clk output, per CPU
 - On/Off
 - Integer ratios of main clock
 - Dynamic/run time control
- Tuned performance to workloads

Advanced Power Management

Dynamic Voltage Per CPU

- Power island per CPU
- External multi-output voltage regulator
- CPC provides per CPU
 - On/Off voltage gating
 - Dynamic/run time control
- Optimizes to minimal power per workload

Imagination

Thank you!

Mark.Throndson@imgtec.com

www.imgtec.com