
Teaching Materials

Introduction
MIPSfpga provides the RTL source code of the MIPS microAptiv UP core for implementation on

an FPGA, together with teaching materials. The MIPS microAptiv UP core is a member of the

same microcontroller family found in many embedded devices, including the popular PIC32MZ

microcontroller from Microchip and Samsung’s new Artik1.

The teaching materials will show you how to use this core as part of a Computer Architecture

course, paving the way for your students to explore how a commercial pipelined processor core

works inside and to use this core in their projects, in effect creating their own SoC designs.

With its long heritage and excellent documentation, MIPS is the preferred choice of RISC

architecture for many teachers around the world. But in the past, to demonstrate key concepts,

teachers had to settle for creating partial ‘MIPS-like’ cores or using unofficial copies of dubious

heritage. Not now! MIPSfpga is the real ‘industrial’ RTL, non-obfuscated, and available freely for

academic use.

Structure
The MIPSfpga teaching materials consist of three parts:

The Getting Started Package contains a detailed guide that begins with a brief introduction

to the MIPSfpga core included in the package. It gives a brief overview of how to setup

the core for simulation or putting it on to an FPGA, as well as programming the

processor. Guides on software installation are also given, along with detailed references

about the core and its ISA – Instruction Set Architecture. All users need this package

first.

MIPSfpga Fundamentals. In here you will find slides with accompanying lab scripts,

illustrated using the Nexys 4 DDR and DE2-115 platforms. With this you will be taken

from building the core, to programming in both c and assembly, with exercises to

complete along the way. You then move on to adding a range of peripherals to the core

to enable a greater level of interaction. The final example takes you through porting

MIPSfpga to other FPGA boards such as Basys 3.

MIPSfpga SOC. The Advanced package enables you to run Buildroot Linux on MIPSfpga

specifically using the Nexys4 DDR platform. The microAptiv core is packaged as an IP

block usable by Vivado IP Integrator. As a result, AXI based IP blocks from Xilinx can

easily be interfaced with the MIPS core. These are used to create an example SoC,

such as a design with a UART and Ethernet, running under Linux, on MIPSfpga. A

custom AXI GPIO block along with an example Linux driver is also provided. There is

extensive documentation included. Collectively these provide an excellent basis for a

SoC course that is highly relevant to the needs of the chip design industry, although the

http://www.microchip.com/pagehandler/en-us/family/32bit/
https://www.artik.io/

2 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

level of complexity makes this a postgrad class. PhD students and Postdocs will also

find this material very useful for advanced projects.

Target Courses & Projects (Education Level)

 Digital Design & Microarchitectures (BSc)

 Computer Architecture, Advanced Computer Architecture (BSc, MSc)

 SoC design (MSc)

 Design Verification (MSc)

 Embedded Systems projects (BSc, MSc)

 Processor Architecture: modifications, enhancements, optimisation…(MSc, PhD)

The Authors
The course materials were developed by David Harris and Sarah Harris, co-
authors of the popular textbook Digital Design and Computer Architecture which
provides a uniquely relevant accompaniment to MIPSfpga.

Complementary Materials

 The textbook ‘Computer Organisation and Design’ by David Patterson

and John L. Hennessy remains the ‘bible’ for these activities, and

provides further depth to Harris & Harris in a MIPSfpga-based course.

Other relevant textbooks are referenced here:

http://community.imgtec.com/university/resources/books/?subject=mips-

architecture

Access the microAptiv core in silicon through boards such as Digilent’s

‘WiFire’ incorporating Microchip’s PIC32MZ MCU.

 Videos of the workshop given by Sarah Harris and Parimal Patel of Xilinx

will be posted online in September 2015 here:

http://community.imgtec.com/university/video-gallery/

Required Tools

Hardware

 Host PC: Windows 64 bit

 Digilent Basys 3 or Nexys 4 DDR, with Xilinx Artix FPGA

 Porting to other boards has been shown: Zed board, Nexys 3, Nexys 4 (not DDR), DE0-CV
and SP605

 JTAG Probe: SEEED Studio MIPS Bus Blaster including 14 to 6 pin adaptor (for Digilent
boards)

Software

 Codescape MIPS SDK Essentials (included with Getting Started Package)

http://www.amazon.com/dp/0123944244
http://community.imgtec.com/university/resources/books/?subject=mips-architecture
http://community.imgtec.com/university/resources/books/?subject=mips-architecture
https://www.digilentinc.com/Products/Detail.cfm?Prod=CHIPKIT-WIFIRE
https://www.digilentinc.com/Products/Detail.cfm?Prod=CHIPKIT-WIFIRE
http://www.microchip.com/pagehandler/en-us/family/32bit/
http://community.imgtec.com/university/video-gallery/
http://www.digilentinc.com/Products/Detail.cfm?Prod=BASYS3
http://digilentinc.com/Products/Detail.cfm?NavPath=2,1301,1319&Prod=NEXYS4DDR
http://www.seeedstudio.com/depot/Bus-Blaster-V3c-for-MIPS-Kit-p-2258.html
http://community.imgtec.com/developers/mips/tools/codescape-mips-sdk/download-codescape-mips-sdk-essentials/

3 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

 Vivado (Xilinx) Web Pack edition

 Open OCD (included with Getting Started Package)

 Mentor Graphics ModelSim (Student or Full editions) or Xilinx Xsim

Core Structure
The core is approximately 40K gates.

Languages available for Getting Started & Fundamentals

 English

 Simplified Chinese

 Japanese

 Russian

 Spanish

http://www.xilinx.com/products/design-tools/vivado/vivado-webpack.html
http://sourceforge.net/projects/openocd/
http://www.mentor.com/company/higher_ed/modelsim-student-edition
http://www.mentor.com/products/fv/modelsim/

4 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

Support
 The MIPS insider forum here has a thread specifically for technical questions about

MIPSfpga

 For curriculum and other discussions, there is the IUP (Imagination University

Programme) forum here

Partners

We have worked closely with Xilinx and Digilent who have given wonderful support to this

large and complex project.

Details on their University Programmes are here:

http://www.xilinx.com/support/university.html

https://learn.digilentinc.com/list

User Licenses

 For the MIPS core:

The agreement is part of the Getting Started Package download process, and

acceptance is required before the download request can be submitted.

The End User Licence Agreement (EULA) allows the use of the MIPS core on FPGA

platforms for the academic purposes of teaching, student projects and research. It allows

teachers to distribute the core to students in classes, and it allows for the core to be

modified. It does not allow the core to be put into silicon. Furthermore, if the core is

modified and the user wishes to patent these modifications, the licence requires that this

is negotiated with Imagination first.

The EULA is written in plain English, and a copy of the EULA is part of the Getting

Started package for future reference.

 For the Teaching Materials:

The agreement is part of the Fundamentals and Advanced download process.

The End User Licence Agreement (EULA) explains that the materials are for Educational

and Non-Commercial use, which means that companies or trainers who wish to use the

materials for paid-for training, must seek Imagination’s prior permission. Distribution of

the materials to your Students is expressly allowed. The agreement allows extracts of

the material to be used in derived teaching materials as long as Imagination’s copyright

is acknowledged, but publication in textbooks needs prior permission (which is usually

given). No warranty is provided as to the effectiveness of the materials. The EULA is

written in plain English, and a copy of the EULA is included in the materials package for

future reference.

http://community.imgtec.com/forums/cat/mips-insider/
http://community.imgtec.com/forums/cat/university/
http://www.xilinx.com/support/university.html
https://learn.digilentinc.com/list

5 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

Plans
We are always pleased to hear about your needs for Teaching Materials. Our focus over the

next year will be on workshops to promote use of MIPSfpga, releasing the Advanced package,

debugging the existing materials, and listening to your feedback through the MIPSfpga thread

on the forums. In addition, we are working on an ‘MPW’ route for researchers who would like to

implement MIPS in silicon.

What we do after that will be determined primarily by you!

Press Release & Blogs
Free and Open Access to a Modern MIPS CPU

http://imgtec.com/news/press-release/imagination-revolutionizes-cpu-architecture-education-

with-free-and-open-access-to-a-modern-mips-cpu-3/

MIPSfpga programme opens up the MIPS architecture to universities worldwide

http://blog.imgtec.com/mips-processors/mipsfpga-opens-up-the-mips-architecture-to-

universities-worldwide

How to join the IUP and access these materials

1. Click ‘Register’ or ’Join IUP’ on the landing page: www.imgtec.com/university

2. Complete the first section: ‘the Community Registration’

3. Tick the box marked ‘Join Imagination University Programme’ and completes the
additional information

4. A verification email will be sent to your inbox for activation.
(Please also check your spam mailbox because occasionally the mail will got filtered)

5. To download teaching materials, visit the IUP page -Resources
http://community.imgtec.com/university/resources/

6. Request the package(s) you want, accept the Licence Agreement, and give some details
about how you plan to use the materials.

7. We then receive a request to approve the download, and normally action this within 48
hours. Once approved, you will receive an e-mail saying you can now make the
download.

NOTE: Requests may be rejected for the following reasons

- The registration details are incomplete
- There are few or no details of intended use
- The requester appears to be a commercial company or a competitor

Please feel free circulate this information to anyone who might be interested and keep
an eye on our webpages for further information such as workshops and updated
packages.

http://imgtec.com/news/press-release/imagination-revolutionizes-cpu-architecture-education-with-free-and-open-access-to-a-modern-mips-cpu-3/
http://imgtec.com/news/press-release/imagination-revolutionizes-cpu-architecture-education-with-free-and-open-access-to-a-modern-mips-cpu-3/
http://blog.imgtec.com/mips-processors/mipsfpga-opens-up-the-mips-architecture-to-universities-worldwide
http://blog.imgtec.com/mips-processors/mipsfpga-opens-up-the-mips-architecture-to-universities-worldwide
http://www.imgtec.com/university
http://community.imgtec.com/university/resources/

6 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

Lab 1
Setting up a Vivado Project for MIPSfpga

7 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

MIPSfpga Lab 1: Setting up a Vivado Project

1. Introduction
This is the first in a series of laboratory exercises acquainting you with system-on-chip design

using Imagination's MIPSfpga platform. In this lab you will learn to set up a Vivado project for

simulating, synthesizing, and downloading the MIPSfpga system onto Digilent's Nexys4 DDR

FPGA board. As you make changes to the MIPSfpga system in the future, you can follow these

steps to compile, simulate, synthesize, download, and test your changes.

The instructions in this lab use Vivado 2015.1. Instructions for later versions of Vivado are

similar, if not exactly the same.

2. Setting up a Vivado Project
In this section we walk through the steps of (1) creating a project for the MIPSfpga system, (2)

simulating the project, (3) compiling the project, and (4) downloading the MIPSfpga system

onto the Nexys4 DDR board.

Before setting up the Vivado project, make a copy of the MIPSfpga system by copying

the rtl_up folder in the MIPSfpga directory (provided with the MIPSfpga Getting

Started materials) to MIPSfpga_Fundamentals\rtl_up.

The Verilog files in the MIPSfpga_Fundamentals\rtl_up directory describe the MIPSfpga system

and are the design source files for the Vivado project you are about to create. In later MIPSfpga

Fundamentals labs, you will extend the functionality of the MIPSfpga system by both modifying

and adding Verilog files to the MIPSfpga_Fundamentals\rtl_up folder.

Step 1. Create Vivado project

Start Vivado. Open a new project by choosing File → New Project (see Figure 1).

Figure 1. Create new Vivado project

8 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

Click Next. Browse to the MIPSfpga_Fundamentals\Xilinx\Lab01_Vivado folder and place the

new project, Project1, in that folder, as shown in Figure 2. Click the Create Project subdirectory

box and click next, as shown below.

Figure 2. Create Vivado project directory

In the next window, leave RTL Project selected and click Next.

Now in the Add Sources window, click on the green plus sign and Add Files... Browse to the

MIPSfpga_Fundamentals\rtl_up directory. Select all of the files (ctrl-a or click, shift-click), as

shown in Figure 3, and click OK.

Figure 3. Adding Verilog files to project

The project should refer to the Verilog (.v) and Verilog header (.vh) files located in the

MIPSfpga_Fundamentals\rtl_up directory – you do not want to make a local copy of the files in

9 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

the Vivado project. So, in the next window, make sure the Copy the sources into Project box is

not selected (see Figure 4) and click Next.

Figure 4. Adding Sources – do not copy sources into project

You will not add any IP, so click Next in the Add Existing IP (optional) window.

In the Add Constraints (optional) window, click on and Add Files... Browse to the

MIPSfpga_Fundamentals\Xilinx\Lab01_Vivado directory. Select mipsfpga_nexys4_ddr.xdc and

click OK (see Figure 5). This constraints file maps the Verilog signals to pins on the FPGA and

describes timing constraints.

Figure 5. Add Xilinx Design Constraints (.xdc) file to Vivado project

Click on the Copy constraints files into project box (see Figure 6) and click Next.

10 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

Figure 6. Copy .xdc file into Vivado project

Now you will choose the Artix-7 FPGA that is on the Nexys4 DDR board as the target. Type (or

copy-paste) the following into the search box: xc7a100tcsg324-1, as shown in Figure 7. Select

the part, as shown, and click Next.

Figure 7. Selecting the Artix-7 FPGA

"xc7a" indicates that it is an Artix-7 FPGA. "100t" says that it has about 100k Logic Cells.

"csg324" indicates a "chip scale ball grid array (BGA)" package with 324 pins, and "-1" is the

speed grade.

Now click Finish in the New Project Summary window (see Figure 8).

11 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

Figure 8. New Project Summary window

After the project initializes, go to the Project Manager window, right-click on

mipsfpga_nexys4_ddr, and select Set as Top in the pull-down menu, as shown in Figure 9. This

will set that module as the top-level module to synthesize, compile, and download to the

Nexys4 DDR board.

Figure 9. Setting the top-level module for synthesis, implementation, and bitstream
generation

12 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

The last step of creating the project is to add a PLL that reduces the on-board 100 MHz clock to

50 MHz to meet timing constraints. To create the PLL, click on IP Catalog under Project

Manager in the Flow Navigator, as shown in Figure 10.

Figure 10. IP Catalog

Now, in the IP Catalog tab of the Project Manager pane, expand FPGA Features and Design, and

then expand Clocking. Double-click on Clocking Wizard, as shown in Figure 11.

Figure 11. Clocking Wizard

The Clocking Wizard window will pop up, as shown in Figure 12. Select PLL, as shown in Figure

12. Leave the Input Clock information as the default (100 MHz).

13 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

Figure 12. Clocking Wizard window

Now click on the Output Clocks tab, and type in 50 as the output frequency in the Output Freq

(MHz) Requested box for clk_out1, as shown in Figure 13.

Figure 13. Select output clock frequency

14 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

Scroll down in the same tab (Output Clocks) and deselect reset and locked, as shown in Figure

14. Then click OK to complete the creation of the PLL.

Figure 14. Deselect reset and locked

A pop-up window will prompt you to "Generate Output Products", as shown in Figure 15. Click

Generate.

Figure 15. Generate PLL

15 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

A window will pop up that says "Out-of-context module run was launched for generating output

products," as shown in Figure 16. Click OK.

Figure 16. Out-of-context generation of PLL

Step 2. Simulating MIPSfpga

Now you are ready to simulate the MIPSfpga system. You will use Vivado's built-in simulator

called XSIM. We already added the testbench.v file when we created the project, and now we

will make it the top-level module for simulation. In the Project Manager panel, scroll down to

Simulation Sources and expand it and the sim_1 folder.

Figure 17. Setting the top-level module for simulation

Right-click on testbench.v and set it as the top-level module for simulation, as shown in Figure

17. Notice that the testbench entry is now bold.

16 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

Click on Add Sources in the Flow Navigator window on the left, select Add or create simulation

sources option, and then click Next. Click on and Add Files…, select All Files in the Files of

type filter, browse to the ram_reset_init.txt file in

MIPSfpga_Fundamentals\rtl_up\initfiles\1_IncrementLEDs, select it, and click OK. Leave the

Copy sources into project box unselected, but leave the Include all design sources for

simulation box checked, as shown in Figure 18. Then click Finish.

Figure 18. Adding simulation source

The text file contains the instructions that will be loaded into MIPSfpga's memory. As you recall

from the MIPSfpga Getting Started Guide, this program, as shown in Figure 19 for your

convenience, writes incremented values to memory address 0xbf800000. Also recall from the

MIPSfpga Getting Started Guide that the LEDs on the Nexys4 DDR board are mapped to

memory address 0xbf800000. So the program writes incremented values to the LEDs.

// C code
unsigned int val = 1;

volatile unsigned int* dest;

dest = 0xbf800000;

while (1) {

 *dest = val;

 val = val + 1;

}

MIPS assembly code
$9 = val, $8 = mem address 0xbf800000

 addiu $9, $0, 1 # val = 1

 lui $8, 0xbf80 # $8=0xbf800000

L1: sw $9, 0($8) # mem[0xbf800000] = val

 addiu $9, $9, 1 # val = val+1

 beqz $0, L1 # branch to L1

 nop # branch delay slot

Figure 19. IncrementLEDs program

The equivalent machine code for the IncrementLEDs program is given in Figure 20.

17 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

Machine Code Instruction Address Assembly Code

24090001 // bfc00000: addiu $9, $0, 1 # val = 1

3c08bf80 // bfc00004: lui $8, 0xbf80 # $8=0xbf800000

ad090000 // bfc00008: L1: sw $9, 0($8) # mem[0xbf800000] = val

25290001 // bfc0000c: addiu $9, $9, 1 # val = val+1

1000fffd // bfc00010: beqz $0, L1 # branch to L1

00000000 // bfc00014: nop # branch delay slot

Figure 20. MIPS machine code

Expand the hierarchy under Simulation Sources and observe that ram_reset_init.txt is added in

a separate sub-folder called Text and it contains the machine code (see Figure 21). Now you are

ready to run the simulation of the MIPSfpga system running that program.

Figure 21. Text file as simulation source

Click on Simulation Settings in the Flow Navigator window on the left, as shown in Figure 22.

Figure 22. Simulation Settings

The simulation settings window will show up, as shown in Figure 23. Make sure the Generate

scripts only is not selected. Click on the Simulation tab and set the simulation run time to 2000

ns. Click OK.

18 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

Figure 23. Change simulation run time

Click on Run Simulation → Run behavioral simulation in the Flow Navigator window, as shown

in Figure 24.

Figure 24. Run simulation

The testbench and lower-level modules will compile, the simulation window will open, and the

simulation results will be displayed, as shown in Figure 25. You will see the top-level signals

being displayed. Click on the Zoom Fit button ().

19 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

Figure 25. Simulation results showing top-level signals

Select all of the signals in the waveform window and then right-click and select Radix →

Hexadecimal. Use shift-click and ctrl-click to select multiple signals at a time.

Delete all of the EJTAG signals and some of the I/O signals: EJ_TRST_N_probe, EJ_TDI, EJ_TDO,

SI_ColdReset_N, EJ_TMS, EJ_TCK, EJ_DINT, IO_Switch, IO_PB, and IO_LEDG. Do not delete

IO_LEDR. Right-click on a signal (or group of signals) and select Delete. (Or simply select the

signals and press the Delete key.) Again, you can also select multiple signals using shift-click and

ctrl-click.

The waveform window will now resemble Figure 26.

Figure 26. Keeping only the desired top-level signals

You can float the waveform window by clicking on the float button () and then maximize it by

clicking on the full size button (left one). Click on the Zoom Fit button to see the

waveform completely. You can also use Zoom In (), Zoom Out (), and Zoom to Cursor ()

buttons to view a desired section of the waveform.

20 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

You can view signals from lower-level modules by adding them to the waveform. For example,

as shown in Figure 27, expand the testbench hierarchy to testbench → sys → mipsfpga_ahb →

mipsfpga_ahb_ram_reset to see the ram_reset_dual_port entry in the Scopes window. Click

on the ram_reset_dual_port entry to see the corresponding signals in the Objects window.

Figure 27. Accessing the signals of lower-level modules

In the waveform window, right-click in the signals area below the last signal, and select New

Divider. The New Divider dialog box will appear. Type Reset RAM Memory in the field and

press Return.

Select all of the objects in the Objects window, right-click and select Add to Wave Window and

observe that the signals are added to the Waveform window. You can change the radix of the

added signals to Hexadecimal as before. In the tool buttons bar, change the run time to 4 us

. Now click on the Restart button , and then click on the Run for

<time> button to reset and run the simulation for 4 us. You will see the output as shown in

Figure 28.

Figure 28. Simulation result showing lower-level module signals

At first the processor is reset: the low-asserted reset signal SI_Reset_N is low. Just after reset

(when SI_Reset_N transitions from 0 to 1), you can view the waveform as it fetches each

21 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

instruction starting with instruction address 0x1fc00000. This address shows up on HADDR and

the instruction read from memory appears on the HRDATA bus one cycle later. Recall that

virtual address 0xbfc00000 translates to physical address 0x1fc00000. The instructions are

executed in sequence until the branch is taken at 0xbfc00010. The code then continuously

repeats from 0xbfc00008 – 0xbfc00014. Recall from the MIPSfpga Getting Started Guide, that

until the caches are initialized by the boot code, each instruction takes 5 cycles. Also view how

incremented values are written on the HWDATA signal as the code executes. HWDATA is the

data being written to memory or, in this case, memory-mapped I/O. IO_LEDR displays the

incremented value because it is memory-mapped to address 0xbf800000. The IO_LEDR signals

are connected to the pins that drive the Nexys4 DDR's LEDs.

After you are finished viewing the waveform, you can close the simulator by selecting File →

Close Simuation. A pop-up window will appear asking if you want to save the waveform. You

could select Save but for now, click Discard.

Step 3. Compiling MIPSfpga

Now you are ready to compile the MIPSfpga system and create a bitfile that you can download

onto the Artix-7 FPGA on the Nexys4 DDR board. Click on the Generate Bitstream button

at the top of the window. The bitstream is a file that configures the FPGA to be the MIPSfpga

system, as defined by the Verilog files. This file is also referred to as the bitfile.

A window may pop up saying:

There are no implementation results available. OK to launch

synthesis and implementation?...

Click Yes. Now wait for synthesis, placement, routing, and bitstream generation to complete.

This typically takes around 10-20 minutes, depending on your computer speed.

After the bitstream has been generated, you will see the Bitstream Generation Completed pop-

up window, as shown in Figure 29.

Figure 29. Bitstream Generation Completed pop-up window

22 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

Viewing the implemented design is optional, but gives some insight into the timing and layout
of the MIPSfpga core. (If you don't want to view it, select Open Hardware Manager and click
OK. Then continue with Step 4 below.) To view the implemented design, leave Open
Implemented Design selected, and click OK. This will take a few minutes.
Then the Implemented Design window will open, as shown in Figure 30.

Figure 30. Implemented Design
Notice the Design Timing Summary pane at the bottom. Most importantly, it says that All user

specified timing constraints are met. The Worst Negative Slack (WNS) is 1.273 ns and the

Worst Hold Slack (WHS) is 0.052 ns, so there are no timing violations. The slack values for your

project are likely slightly different. Each time Vivado places and routes the design, a different

configuration results.

As you add to or modify the MIPSfpga system in the future, check that the timing constraints

are met, and if not, reduce the frequency of the PLL and/or change the timing constraints in the

Xilinx Design Constraints (.xdc) file until they are. The WNS will indicate how much the cycle

time needs to be increased.

For example, Figure 31 shows a Project Summary page for a design that does not meet timing.

Notice the negative values of WNS (shown in red). In this case the cycle time is too short by

4.91 ns, so add that amount (or slightly more) to the cycle time to meet timing. If the frequency

of the failing design were 100 MHz (cycle time = 1/100 MHz = 10 ns), the cycle time would need

to increase to at least (10 + 4.91) ns ≈ 15 ns (frequency = 1/15 ns ≈ 66 MHz).

23 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

Figure 31. Design that does not meeting timing constraints

Step 4. Downloading MIPSfpga onto Nexys4 DDR FPGA Board

Now you are ready to download the compiled design onto the Nexys4 DDR FPGA board. First,

connect and turn on the Nexys4 DDR board. Figure 32 shows the board and highlights the

power switch and the USB port. Plug the standard end of the programming cable into your

computer and the micro-USB end of the programming cable into the board, at the location

labeled "USB Programmer Port" in Figure 32. Now turn the board's power switch ON. If the

board is factory configured, the board will run a pre-loaded program that writes to the 7-

segment displays with a snake-like pattern that repeats indefinitely. To program the board, it

can be in QSPI mode (as shown in Figure 32 with the left-most Mode pins connected by a

jumper) or in JTAG mode (with the two middle pins of the Mode selector connected by a

jumper).

24 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

Figure 32. Nexys4 DDR board (photograph © Digilent Inc., 2015)

In the Vivado window, select Flow → Open Hardware Manager, as shown in Figure 33.

Figure 33. Open Hardware Manager

25 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

The Hardware Manager window will open. Now click on Open Target and choose Auto
Connect, as shown in Figure 34.

Figure 34. Hardware Manager window, Auto Connect

After you click on Auto Connect, Vivado takes several seconds to connect to the target FPGA on

the Nexys4 DDR board. You will see the following warning, that you can ignore:

WARNING: [Labtools 27-3123] The debug hub core was not detected

at User Scan Chain 1 or 3. …

If you see the message "No hardware target is open," two causes are most likely:

1. You forgot to plug in the Nexys4 DDR board into your computer and/or turn it on.

or

2. You need to install/reinstall the driver for the Nexys4 DDR board's USB programmer

cable. Refer to instructions in the MIPSfpga Getting Started Guide if you need help

reinstalling the driver.

Now click on Program device and select xc7a100t_0, as shown in Figure 35.

Figure 35. Selecting Program device

The Program Device window will open, as shown in Figure 36. The Bitstream file box should

autopopulate, but if it does not, choose:
 MIPSfpga_Fundamentals\Xilinx\Lab01_Vivado\Project1\Project1.runs\impl_1\mipsfpga_nexys4_ddr.bit

26 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

Figure 36. Program device with bitstream file

Leave the Enable end of startup box selected and click Program.

A window will pop up showing the programming progress, as shown in Figure 37. Programming

the Artix-7 FPGA on the Nexys4 DDR board will take several seconds. Once it is complete, the

progress window will close.

Figure 37. Program Device progress window

The MIPSfpga system is now downloaded onto the Nexys4 DDR board. Push the red reset

pushbutton (labeled CPU RESET on the board, see Figure 32) to reset and start the MIPSfpga

core. You will now see the LEDs display increasingly incremented values.

The MIPSfpga system is loaded with the IncrementLEDsDelay program. The machine code for

this program is in the ram_rest_init.txt file located in the same directory as the Verilog files (i.e.,

in MIPSfpga_Fundamentals\rtl_up). The IncrementLEDsDelay program is similar to the

IncrementLEDs program that you simulated earlier in this lab, but it adds a delay so that our

eyes can detect the results on the LEDs. It would have been tedious to simulate thousands of

cycles of delay, so we took the delay out of the program code we used for simulation (see

Figure 19). The C, MIPS assembly, and machine code for IncrementLEDsDelay is shown in Figure

38 and Figure 39.

// C code

unsigned int val = 1;

volatile unsigned int*

ledr_ptr;

ledr_ptr = 0xbf800000;

while (1) {

 *ledr_ptr = val;

MIPS assembly code

$9 = val, $8 = memory address 0xbf800000

 addiu $9, $0, 1 # val = 1

 lui $8, 0xbf80 # $8=0xbf800000

L1: sw $9, 0($8) # mem[0xbf800000] = val

 addiu $9, $9, 1 # val = val+1

27 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

 val = val + 1;

 // delay

}

delay: # loop 2,500,000x

 lui $5, 0x026 # $5 = 2,500,000

 ori $5, $5, 0x25a0

 add $6, $0, $0 # $6 = 0

L2: sub $7, $5, $6 # $7 = 2,500,000 - $6

 addi $6, $6, 1 # increment $6

 bgtz $7, L2 # finished?

 nop # branch delay slot

 beqz $0, L1 # branch to L1

 nop # branch delay slot

Figure 38. IncrementLEDsDelay program

24090001 // bfc00000: addiu $9, $0, 1

3c08bf80 // bfc00004: lui $8, 0xbf80

ad090000 // bfc00008: L1: sw $9, 0($8)

25290001 // bfc0000c: addiu $9, $9, 1

3c050026 // bfc00010: delay: lui $5, 0x026

34a525a0 // bfc00014: ori $5, $5, 0x25a0

00003020 // bfc00018: add $6, $0, $0

00a63822 // bfc0001c: L2: sub $7, $5, $6

20c60001 // bfc00020: addi $6, $6, 1

1ce0fffd // bfc00024: bgtz $7, L2

00000000 // bfc00028: nop

1000fff6 // bfc0002c: beq $0, $0, L1

00000000 // bfc00030: nop

Figure 39. ram_reset_init.txt memory initialization file for IncrementLEDsDelay

The next labs will show how to write, compile, download, and run C and MIPS assembly

programs on the MIPSfpga system.

28 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

Lab 2

C Programming

29 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

MIPSfpga Lab 2: C Programming

3. Introduction
In this lab you will learn to program the MIPSfpga processor in C. You will first complete a

tutorial on writing, compiling, and downloading an example C program. Then you will write

your own C program to calculate the Fibonacci numbers.

4. MIPSfpga C Tutorial

The MIPSfpga processor is programmed using Imagination's Codescape compiler tools. If you

have not already, install the Codescape SDK and OpenOCD by running the installer located here:

 MIPSfpga_Fundamentals\Scripts\OpenOCD-0.9.3-Installer.exe

If you used a version earlier than 1.2 of the MIPSfpga Getting Started Guide, you will need to

update the Codescape/OpenOCD installation by running the installer indicated above.

Codescape supports programming in both C and assembly language. You will use C in this lab

and MIPS assembly language in Lab 3.

In this tutorial, you will learn to write and compile a simple program that reads the value of the

switches on the Nexys4 DDR board and flashes their values to the LEDs. You’ll also learn to step

through a program and debug it using the Bus Blaster probe and gdb, which is part of the

Codescape tools.

Example C Program

Before writing your own program, we walk you through the steps of compiling, debugging, and

running a program using some example code. Browse to this directory:

MIPSfpga_Fundamentals\Xilinx\Lab02_C\ReadSwitches

Open the file main.c using a text editor such as Notepad or Wordpad. The main.c file contains

the ReadSwitches program, as shown in Figure 40.

int main() {

 volatile int *IO_SWITCHES = (int*)0xbf800008;

 volatile int *IO_LEDR = (int*)0xbf800000;

 volatile unsigned int switches;

 while (1) {

30 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

 switches = *IO_SWITCHES;

 *IO_LEDR = switches;

 delay();

 *IO_LEDR = 0; // turn off LEDs

 delay();

 }

 return 0;

}

void delay() {

 volatile unsigned int j;

 for (j = 0; j < (1000000); j++) ; // delay

}

Figure 40. ReadSwitches C program

The following variable declarations make the variables IO_SWITCHES and IO_LEDR point to the

addresses 0xbf800008 and 0xbf800000, which are the memory-mapped I/O addresses of the

switches and LEDs, respectively, on the Nexys4 DDR board.

 volatile int *IO_SWITCHES = (int*)0xbf800008;

 volatile int *IO_LEDR = (int*)0xbf800000;

Memory-mapped I/O was described in the MIPSfpga Getting Started Guide and will be

described further in Lab 5. A read to address 0xbf800008 returns the value of the switches in

the lower 16 bits (and 0's in the upper 16 bits), and a write to 0xbf800000 displays the lower 16

bits of the value on the LEDs.

The program reads the switches on the FPGA board by reading address 0xbf800008:

switches = *IO_SWITCHES;

The program then writes that value to the LEDs by writing to address 0xbf800000, the memory-

mapped address of the LEDs.

*IO_LEDR = switches;

The program then delays some time, turns the LEDs off, then delays again before repeating.

delay();

*IO_LEDR = 0;

delay();

31 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

The variables switches and j are declared volatile so that they are not optimized away

by the compiler.

It is critical to declare variables related to hardware volatile so that the compiler does

not optimize them away.

Compiling, Running, and Debugging

Now compile, run, and debug the ReadSwitches example C program on the MIPSfpga core using

the following steps, described in detail below.

Step 1. Download the MIPSfpga system onto the Nexys4 DDR board

Step 2. Compile the C program

Step 3. Load the C program onto MIPSfpga using Bus Blaster

Step 4. Debug the C program using gdb as needed

Remember, that to complete these labs you need to have installed all of the required software

and drivers (Vivado, Codescape, and OpenOCD, as well as Bus Blaster and Nexsy4 DDR board

drivers) as described in the MIPSfpga Getting Started Guide.

Step 1. Download the MIPSfpga system to the Nexys4 DDR board

First, you will download the MIPSfpga system onto the Nexys4 DDR board. To do so, connect

the Nexys4 DDR FPGA board to your computer, turn the board on, and open Vivado. Choose

Flow → Open Hardware Manager from Vivado's top menu (see Figure 41).

Figure 41. Open Vivado's Hardware Manager

Click on Open Target → Auto Connect (see Figure 42). Warning: Sometimes Vivado crashes at

this point. Simply reopen Vivado if that happens.

32 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

Figure 42. Autoconnect to FPGA on Nexys4 DDR board

Now click on Program device → xc7a100t_0 (see Figure 43).

Figure 43. Program device

In the Program Device window, select the bitfile you created in Lab 1 (or the one provided at

MIPSfpga_Fundamentals\Xilinx\Lab01_Vivado\mipsfpga_nexys4_ddr.bit). Then click Program.

Leave the Debug probes file blank.

Click on the red CPU Reset button on the Nexys4 DDR board to reset the MIPSfpga core and

begin running the pre-loaded program that displays incremented values on the LEDs.

Step 2. Compile the example program

Now compile the ReadSwitches example C program by opening a command shell. To do so, go

to the Start menu, type in cmd.exe, and select . Or you can shift-right-click on

an empty space on your screen and select "Open command window here". In the command

33 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

shell, change to the MIPSfpa_Fundamentals\Xilinx\Lab02_C\ReadSwitches directory. For

example, if MIPSfpga_Fundamentals is in C:\ type:

cd C:\MIPSfpga_Fundamentals\Xilinx\Lab02_C\ReadSwitches

Compile the example C code by typing make at the prompt in the command window:

make

This runs the Makefile, which compiles the user code (found in main.c) with the boot code

(found in boot.S and the other .S files). Open and view the Makefile using a text editor such as

Notepad or Wordpad. For future programs, any C program files can be placed under

"CSOURCES="

CSOURCES= \

main.c

Below is a brief description of the main parts of the Makefile. The top part of the file gives the

names and locations of the compiler tools (gcc, ld, objdump, etc.). These compiler tools are

provided with Codescape. They are GNU tools targeted to the MIPSfpga processor.

ifndef MIPS_ELF_ROOT

$(error MIPS_ELF_ROOT must be set to point to toolkit

installation root)

endif

CC=mips-mti-elf-gcc

LD=mips-mti-elf-ld

OD=mips-mti-elf-objdump

OC=mips-mti-elf-objcopy

SZ=mips-mti-elf-size

The next part of the Makefile indicates the flags to use for compiling and loading the program.

CFLAGS = -O1 -g -EL -c -msoft-float -march=m14kc

LDFLAGS = -EL -msoft-float -march=m14kc -Wl,-Map=FPGA_Ram_map.txt

For the C flags, -O1 says to use optimization level 1. You can change this to higher optimization

levels as desired, for example optimization level 2 (-O2) or 3 (-O3). It is typically a good idea to

34 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

debug your code using the lowest optimization level (0 or 1). Then, once your code is working,

increase the optimization level to produce faster, denser code. –march=m14kc indicates to

target the M14K MIPS microAptiv architecture, -msoft-float says that there is no floating-

point unit and to use software floating point routines instead.

The LDFLAGS are used when creating the ELF file, which will provide the program code as well

as information about how to load the program and data into the MIPSfpga system's memory.

Generally, the LDFLAGS indicate to not generate any floating point instructions (–

msoftfloat) and to target the M14K MIPS architecture. The file indicated

(FPGA_Ram_map.txt) describes how and where the program, boot code, and data will be

loaded into memory, according to the physical memory map shown in Lab 1. The rest of the LD

flags (LDFLAGS += ...) indicate where to place the program, boot code, stack, etc. in

memory.

The remainder of the Makefile describes how to compile the program and to clean the

directory (i.e., remove files created during compilation). To clean the directory of files created

during compilation, type the following at the command prompt:

make clean

If you just cleaned the directory, compile the program (main.c) again by typing make at the

command prompt. Notice that at the end of compilation, the Makefile outputs the size of the

executable, as shown in Error! Reference source not found..

Figure 44. Command shell output of Makefile

35 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

The text is 9132 bytes, the data is 1204 bytes and the bss segment (static data that should be

initialized to 0) is 1072 bytes for a total of 11408 = 0x2c90 bytes. This fits easily within the

MIPSfpga memory space. However, you will want to keep your eye on these numbers for larger

programs to make sure they fit within MIPSfpga's physical memory.

You should now see the following files in the ReadSwitches directory:

 FPGA_Ram.elf

 FPGA_Ram_dasm.txt

 FPGA_Ram_modelsim.txt

 main.o

FPGA_Ram.elf is the main output of compilation. It is the ELF (executable and linkable format)

executable that you will use to load the program into the memory of the MIPSfpga core.

FPGA_Ram_dasm.txt is a disassembled version of the executable. It is basically a human-

readable version of the ELF file that shows instruction addresses and instructions interspersed

with the line numbers of the higher-level (assembly or C) source code.

FPGA_Ram_modelsim.txt is another human-readable version of the ELF file, but it is not

interspersed with the source code information. It shows the memory addresses and

corresponding instructions/data, including those memory addresses that should be initialized to

0. We will use this file to create memory definition files for simulation of compiled programs

using Modelsim.

main.o is the executable and linkable version of main.c.

Open FPGA_Ram_dasm.txt using a text editor to see where the boot code and user code will be

placed. The top of the file shows the boot code, starting at 0x9fc00000. Recall that this virtual

address maps to physical address 0x1fc000000, which is the physical address of the first

instruction fetched upon reset of the MIPSfpga core.

Near the bottom of the file, you can view the user code from main.c, starting at 0x8000075c.

This will map to physical addresses starting at 0x0000075c.

Step 3. Load the C program onto the MIPSfpga system using Bus Blaster

Now that the example program is compiled, you will load it onto the MIPSfpga core using the

Bus Blaster probe. First, connect the Bus Blaster probe to the Nexys4 DDR board, as shown in

Figure 45. Do so by connecting the two rows of 6 header pins into the small Adapter Board.

Then connect the Adapter Board into the PMOD-B port of the Nexys4 DDR board, as shown in

the figure. Connect one side of the ribbon cable into the small Adapter board and the other side

36 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

into the Bus Blaster probe. Connect one side of the USB cable between the Bus Blaster probe

and your computer. Remember, it is best to use the same port for the Bus Blaster probe as the

one on which you installed the drivers for it.

Figure 45. Nexys4 DDR board connected to the Bus Blaster probe

Now open a command shell (i.e., Start menu → cmd.exe.) In the command shell, change to the

MIPSfpga_Fundamentals\Scripts\Nexys4_DDR directory. For example, if

MIPSfpga_Fundamentals is located on the C drive, type the following at the shell prompt:

cd C:\MIPSfpga_Fundamentals\Scripts\Nexys4_DDR

Now you will run the loadMIPSfpga.bat script that will (1) compile the program, (2) set up a

connection to the MIPSfpga core using OpenOCD, (3) download the program onto the MIPSfpga

37 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

system, and (4) allow you to use the Gnu debugger (gdb) to load and debug the program on the

MIPSfpga core.

Run the loadMIPSfpga.bat batch script supplying the directory of the ReadSwitches program as

the argument. For example, if MIPSfpga_Fundamentals is on the C drive, at the command font,

type:

 loadMIPSfpga.bat C:\MIPSfpga_Fundamentals\Xilinx\Lab02_C\ReadSwitches

Or you could type:

 loadMIPSfpga.bat ..\..\Xilinx\Lab02_C\ReadSwitches

After running the script, you will see the ReadSwitches program running on the MIPSfpga core.

Recall that the ReadSwitches program repeatedly reads the value of the switches and flashes

that value on the LEDs. Toggle some of the switches at the bottom of the Nexys4 DDR board

and watch as the corresponding LEDs flash.

The loadMIPSfpga.bat script first opens a shell to compile the specified program using make. It

then opens up two more shells to create the OpenOCD connection and run gdb. After you are

finished with a program, you need to close these two windows.

Step 4. Debug the C program using gdb as needed

Although this ReadSwitches program works and requires no debugging, we will show you how

to go through the process of debugging using gdb, supplied as part of the Codescape SDK.

Click on the gdb command shell that was opened by the loadMIPSfpga.bat script in the previous

step. Enter the sequence of commands shown in Table 1 to halt the program, set breakpoints,

view variable and register values, etc.

Table 1. gdb command sequence

Command Description

monitor reset halt Reset and stop the processor. Notice the program stopped running.

Shortcut: mo reset halt

b main Set a breakpoint at the main function. (Short for: "break main".)

Notice that the breakpoint is set at 0x800007b4, just after the code for

the delay function and stack operations (located at addresses

0x8000075c – 0x800007b0).

Note that you can set breakpoints even when the processor is running,

but the breakpoints will take effect only when the processor is halted

(mo reset halt).

38 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

b *0x800007b8 Set a breakpoint at instruction address 0x800007b8. In the

ReadSwitches C program, this is the load word instruction (lw) that

reads the value of the switches (see

MIPSfpga_Fundamentals\Xilinx\Lab02_C\ReadSwitches\FPGA_Ram_d

asm.txt)

 800007b8: 8e020008 lw v0,8(s0)

Note that you could also have typed: b 20

This would set a breakpoint at line 20 of main.c

b *0x800007c4 Set a breakpoint at instruction address 0x800007c4. In the

ReadSwitches C program, this is the store word instruction (sw) that

writes to the LEDs (see

MIPSfpga_Fundamentals\Xilinx\Lab02_C\ReadSwitches\FPGA_Ram_d

asm.txt)

 800007c4: ae020000 sw v0,0(s0)

i b List the breakpoints. (Short for: "info breakpoint".) At this point it will

list the breakpoint at instruction addresses 0x800007b4 (main),

0x800007b8, and 0x800007c4.

c Continue the processor execution. (Short for: "continue".) It will stop

at the first breakpoint, in this case, when it gets to main (instruction

address 0x800007b4).

x/3i $pc Prints 3 instructions starting with the current instruction ($pc is the

program counter and contains the address of the current instruction).

800007b4: lui s0,0xbf80

800007b8: lw v0,8(s0)

800007bc: sw v0,16(sp)

x/3x $pc Prints 3 instructions in hexadecimal, starting at the address specified.
c Continue to the next break point, which is at 0x800007b8.

stepi Executes a single instruction. For example, now you will see the PC

increment to 0x800007bc.

Shortcut: si

si Step one more instruction. (You can also simply press the Enter key to

repeat the last gdb command.)

p switches Now that the switches have been read, we can print the value of the

variable switches. (Short for: "print switches".) For example,

if the 3 least significant switches are 1 (i.e., in the UP position),

switches will have the value 7.

p/x switches Prints the value of the switches variable in hexadecimal.

p/x &switches Prints the address of the switches variable

i r Print the value of all registers. (Short for: "info registers".)

39 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

i r v0 Print the value of register v0 only. At this point, v0 holds the value of

the FPGA board switches. This value will be written to the LEDs by the

store word (sw) instruction at 0x800007c4.

c Continue program execution. (Short for: "continue".) Execution is now

at 0x800007c4, the store word instruction that will write the value of

the switches to the LEDs.

i r s0 Print the value of register s0. s0 currently holds the memory-mapped

I/O address of the LEDs: 0xbf800000.

i r v0 Print the value of register v0. v0 holds the value of the switches that

will get written to the LEDs.

si Execute the store word instruction and watch as the LEDs are updated

to the value of the switches.

d 1 Delete breakpoint 1 (type i b to list the breakpoints with their

numbers). This deletes the breakpoint at the beginning of main.

monitor reset run Reset and run the processor. This will run the processor without

breakpoints, even if breakpoints have been set.

Shortcut: mo reset run

For a list of other gdb commands, refer to the GDB User Manual available as a link on this

webpage:

http://www.gnu.org/software/gdb/documentation/

5. MIPSfpga Exception Handler

MIPSfpga can enter the exception handler for various reasons including accessing an illegal

address or attempting to execute an unknown instruction. Here we show how to write an

exception handler for MIPSfpga, so that you will know when an exception occurs. Browse to

MIPSfpga_Fundamentals\Xilinx\Lab02_C\ExceptionHandler and open main.c. View the

_mips_handle_exception function, as shown below. This function, which will be called

upon an exception, displays 0x8001 on the LEDs to indicate that an exception occurred. You

could choose a different value to output. If this function does not exist in your code, upon an

exception, the processor simply hangs.

void _mips_handle_exception(void* ctx, int reason) {

 volatile int *IO_LEDR = (int*)0xbf800000;

 *IO_LEDR = 0x8001; // Display 0x8001 on LEDs to indicate error state

 while (1) ;

40 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

}

To illustrate what happens when an exception occurs, the code in this program intentionally

causes an exception by attempting to write to address 0 be executing the code below.

 volatile int *test_error = (int*)0x0;

 *test_error = 56; // write to address 0 will cause an exception

Compile and run this code on the MIPSfpga system. At a command shell prompt, change to the

MIPSfpga_Fundamentals\Scripts\Nexys4_DDR directory and type:

 loadMIPSfpga.bat ..\..\Xilinx\Lab02_C\ExceptionHandler

You will want to include this exception handler function (_mips_handle_exception) in all

of your code to detect when an exception occurs.

6. Fibonacci Numbers

Now you will write your own C program, compile it, and run it on MIPSfpga. Create a program

that will calculate and display the first 11 Fibonacci numbers on the LEDs. Each number in the

Fibonacci series is the sum of the previous two numbers. Table 2 lists the first few numbers in

the series.

Table 2: Fibonacci Series

n 1 2 3 4 5 6 7 8 9 10 11 …

fib(n) 1 1 2 3 5 8 13 21 34 55 89 …

fib(n) 0x1 0x1 0x2 0x3 0x5 0x8 0xd 0x15 0x22 0x37 0x59

We can also define the fib function for negative values of n. To be consistent with the

definition of the Fibonacci series, what would the following values be?

fib(0) = ____

fib(-1) = ____

These values are useful when writing a loop to compute fib(n) for all non-negative values of n.

Make a copy of the Lab02_C/ExceptionHandler folder and rename the new folder Fibonacci.

Write your program in the main.c file in that folder. Your program should compute the

Fibonacci numbers for n = 1…11 and output each Fibonacci number to the LEDs. The LEDs

should display the Fibonacci numbers in binary, with a delay between each number so that they

are viewable.

41 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

Once you have finished writing your program, use the make command to compile it. If there

are any errors, fix them and recompile.

After your Fibonacci program compiles without errors, load it onto the MIPSfpga core by:

1. Opening a command shell

2. Changing to the MIPSfpga_Fundamentals\Scripts\Nexys4_DDR directory

3. Typing at the command prompt:

loadMIPSfpga.bat C:\MIPSfpga_Fundamentals\Xilinx\Lab02_C\Fibonacci

Table 2 lists the Fibonacci numbers in hexadecimal to help you read the binary values on the

LEDs. In later labs, you will expand the MIPSfpga hardware to enable you to use the 7-segment

displays available on the Nexys4 DDR FPGA board. But for now, remember that you can also use

breakpoints in gdb to examine the values produced by your program.

42 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

Lab 5
Memory-Mapped I/O: 7-Segment Displays

43 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

MIPSfpga Lab 5:

Memory-Mapped I/O: 7-Segment Displays

7. Introduction

In this lab you will learn about memory-mapped inputs and outputs (I/O) by building hardware
modules to expand the capability of the MIPSfpga system so that it can write to the 7-segment
displays on the Nexys4 DDR board. You will then test your new hardware by simulating a short
sequence of MIPS assembly code. At the end of the lab, you will write C programs that display
the value of the switches on the 7-segment displays.

8. MIPSfpga Memory-Mapped I/O

A processor uses the memory interface to interact with peripheral devices, such as the
switches, LEDs, and 7-segment displays on the Nexys4 DDR FPGA board. Memory-mapped I/O
enables a processor to write to or read from a peripheral device in the same manner that it
reads or writes memory. Each peripheral device is assigned one or more memory addresses.
When the processor accesses such a memory address, the peripheral device is accessed instead
of memory. The MIPSfpga system uses the AHB-Lite bus to access external memory and
peripherals.

AHB-Lite Bus

The AHB-Lite bus has a clock, write enable, address, and read and write data signals (HCLK,
HWRITE, HADDR, HRDATA, and HWDATA), as shown in Figure 46. The "H" prefix indicates that
they are part of the AHB-Lite bus. Memory and peripherals are connected to this interface to
receive and supply data. The MIPSfpga core sends these signals to the AHB-Lite Bus:

 HCLK: the 50 MHz system clock

 HWRITE: write enable (1 when writing, 0 when reading)

 HADDR: the address being read or written

 HWDATA: the data being written on a write

The MIPSfpga core receives the following input from the AHB-Lite bus:

 HRDATA: the read data produced by memory or the peripherals

The MIPSfpga system has three modules on the AHB-Lite bus: two memories (RAM0 and RAM1)
and a general-purpose I/O module (GPIO). RAM0 contains the boot code and RAM1 contains
the user code and data. The GPIO unit interfaces with the LEDs, switches, and pushbuttons on
the Nexys4 DDR board.

44 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

Figure 46. MIPSfpga processor with three peripheral devices

In addition to the three peripherals, the memory-mapped I/O interface requires an Address
Decoder and a multiplexer. Depending on the address generated by the processor
(HADDR[31:0]), the Address Decoder will enable the processor to access one of the three
modules. The Address Decoder generates a select signal HSEL[2:0] that is used by the modules
and by the 3:1 multiplexer.

RAM0 holds the boot code (virtual addresses 0xbfc00000-0xbfc1fffc = physical addresses
0x1fc00000-0x1fc1fffc). RAM1 holds the user code (virtual addresses 0x80000000-0x8003fffc =
physical addresses 0x00000000-0x0003fffc). The LEDs, switches, and pushbuttons on the
Nexys4 DDR board are mapped to virtual memory addresses 0xbf800000-0xbf80000c, as shown
in Table 3. The processor code uses virtual memory addresses, and the AHB-Lite bus receives
physical addresses. The memory management unit (MMU) on the MIPSfpga core performs this
address translation.

Table 3. Memory addresses for Nexys4 DDR FPGA board
Virtual address Physical address Signal Name Nexys4 DDR

0xbf80 0000 0x1f80 0000 IO_LEDR LEDs

0xbf80 0008 0x1f80 0008 IO_SW switches

0xbf80 000c 0x1f80 000c IO_PB U, D, L, R, C pushbuttons

The following sequence of MIPS assembly instructions writes the value 5 to the LEDs:

 lui $8, 0xbf80 # $8 = 0xbf800000 (address of LEDs)

 addi $9, $0, 5 # $9 = 5

 sw $9, 0($8)

Recall that load-upper-immediate (lui) loads the 16-bit value 0xbf80 into the upper half of $8
and clears the lower half. Upon execution of the store word instruction (sw), HADDR =
0x1f800000, HWRITE = 1, and HWDATA = 5. The Address Decoder detects that address

45 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

0x1f800000 belongs to the general-purpose I/O (GPIO) peripheral and asserts HSEL[2], the
select signal associated with that peripheral. The GPIO module detects that HSEL[2] and
HWRITE are asserted. Because the GPIO module could potentially write to multiple peripherals,
the module uses the address to determine that the LEDs should be written with the value on
the HWDATA bus. Specifically, a register whose output is physically connected to the LEDs is
updated with the value on HWDATA. That way, the value persists until the LEDs are written
again by a later instruction.

Similarly, the following sequence of code reads the value of the switches:

 lui $8, 0xbf80 # $8 = base address of the I/O

 lw $9, 8($8) # $9 = value of the switches

Upon execution of the load word instruction (lw), HADDR = 0x1f800008 and HWRITE = 0
(indicating a read). The Address Decoder detects that address 0x1f800008 belongs to the GPIO
peripheral and asserts HSEL[2] (and keeps the other select signals HSEL[1] and HSEL[0] low).
The GPIO module detects the address corresponding to the switches and selects to send the
value of the switches to its read data output, HRDATA2. The select signals HSEL[2:0] control the
multiplexer. Because HSEL[2] is asserted, the multiplexer sends HRDATA2 through to HRDATA.
The MIPSfpga processor then reads the value on HRDATA, as it would with a typical read from
memory, and stores that value in $9. Thus, after the lw completes, $9 contains the value of the
switches.

The hardware for the MIPSfpga AHB-Lite modules is located in the mipsfpga_ahb module and
its submodules. It is best to view this module in your Vivado project, so that the hierarchy is
clear. Open the Vivado project that you created in Lab 1 (i.e., in
MIPSfpga_Fundamentals\Xilinx\Lab01_Vivado\Project1). In the Project Manager window,
expand mipsfpga_nexys4_ddr, then mipsfpga_sys, then mipsfpga_ahb to view the
mipsfpga_ahb hierarchy, as shown in Figure 47. Double-click on any of the modules and the
Verilog file will open in the neighboring panel.

Figure 47. mipsfpga_ahb hierarchy shown in Vivado

46 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

For example, double-click on mipsfpga_ahb to view the interface signals (see Figure 48). Notice
all of the AHB-Lite signals from Figure 46 (HCLK, HADDR, HWRITE, HWDATA, and HRDATA).
Additional AHB-Lite signals are also available if desired. The module also has the memory-
mapped I/O signals IO_Switch, IO_PB, and IO_LEDR that connect to the switches, pushbuttons,
and LEDs on the Nexys4 DDR board. IO_LEDG is not used on the Nexys4 DDR board.

Figure 48. mipsfpga_ahb interface signals

The modules instantiated within mipsfpga_ahb are the three peripherals, address decoder, and
multiplexer shown in Figure 46. The corresponding Verilog module names are given in Table 4.
View the Verilog code to see how the functionality described above is implemented.

Table 4. AHB-Lite Modules

Name from Figure 46 Module Name

RAM0 mipsfpga_ahb_ram_reset

RAM1 mipsfpga_ahb_ram

GPIO mipsfpga_ahb_gpio

Address Decoder ahb_decoder

Multiplexer (for HRDATA) ahb_mux

The GPIO module (mipsfpga_ahb_gpio) interfaces with the general-purpose I/O on the Nexys4
DDR board. The MIPSfpga system includes access to the LEDs, switches and pushbuttons on the
board. In this and the next labs, you will expand the MIPSfpga functionality to extend to other
peripherals, starting with the eight 7-segment displays available on the Nexys4 DDR board.

47 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

7-Segment Displays

Digits can be represented using 7-segment displays, as shown in Figure 49. Each of the seven
segments is labeled a through g. The numbers 0 through F light up the segments shown in
Figure 50. For example, the number 0 lights up all but the middle segment, g.

a

b

c

d

g

e

f

Figure 49. Seven-segment display

0 1 2 3 4 5 6 7 8 9 A B C D E F

Figure 50. Seven-segment display function

Given an input number ranging from 0x0 – 0xF, we will show how to expand the MIPSfpga
system to drive the 7-segment displays to show that number. Each segment of the display is
low-asserted, so it turns ON when it is 0.

The truth table below (Table 5) shows the inputs (a 4-bit value from 0-15) and outputs for a 7-
segment display decoder that takes in a 4-bit number and produces the value of the segments
corresponding to that number. So, for example, with an input of "0", the 7-segment display
decoder turns all but the middle segment (Sg) ON. Thus, the first row for Hexadecimal digit "0"
shows all the segments as 0 except Sg. (Remember that the segments are low-asserted, so they
are ON when they receive 0.) The digit "1" should only have Sb and Sc ON (so Sb and Sc are 0 in
that row), and so forth.

48 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

Table 5. Truth table for 7-segment display decoder

Hexadecimal

Digit

Inputs Outputs

D3 D2 D1 D0 Sa Sb Sc Sd Se Sf Sg HEX

0 0 0 0 0 0 0 0 0 0 0 1 01

1 0 0 0 1 1 0 0 1 1 1 1 4f

2 0 0 1 0 0 0 1 0 0 1 0 12

3 0 0 1 1 0 0 0 0 1 1 0 06

4 0 1 0 0 1 0 0 1 1 0 0 4c

5 0 1 0 1 0 1 0 0 1 0 0 24

6 0 1 1 0 0 1 0 0 0 0 0 20

7 0 1 1 1 0 0 0 1 1 1 1 0f

8 1 0 0 0 0 0 0 0 0 0 0 00

9 1 0 0 1 0 0 0 1 1 0 0 0c

A 1 0 1 0 0 0 0 1 0 0 0 08

B 1 0 1 1 1 1 0 0 0 0 0 60

C 1 1 0 0 1 1 1 0 0 1 0 72

D 1 1 0 1 1 0 0 0 0 1 0 42

E 1 1 1 0 0 1 1 0 0 0 0 30

F 1 1 1 1 0 1 1 1 0 0 0 38

Build 7-segment decoder

Write a Verilog module that describes the seven-segment display decoder in hardware. The
module declaration is provided for you in:

 MIPSfpga_Fundamentals\Xilinx\Lab05_7seg\VerilogFiles\mipsfpga_ahb_sevensegdec.v

The module has a 4-bit input, data[3:0], and a 7-bit output, segments[6:0], corresponding to
each of the segments a-g. Test your hardware in simulation using XSIM and debug as needed. In

49 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

the next step, you will use this module to drive the 7-segment displays on the Nexys4 DDR
board.

7-Segment Displays on the Nexys4 DDR board

The Nexys4 DDR board has eight 7-segment digits. All eight of the digits on the Nexys4 DDR
board are connected to the same low-asserted segment pins, referred to as CA, CB, CC,…,CG.
However, each digit has its own enable which is also low-asserted. Figure 51 shows the eight 7-
segment displays on the Nexys4 DDR board. CA is connected to the cathode of the A segment
for all eight displays, CB to the cathode of the B segment for all displays, and so forth. Each digit
has an enable signal, corresponding to the respective bit of the signal AN[7:0]. AN[7:0] is
connected via an inverter, to the anode of all segments for the respective digit. For example, if
AN[7] is 0, digit 7 will be driven to the values on CA…CG.

Figure 51. Eight 7-segment displays on the Nexys4 DDR board

(© Nexys4 DDR Reference Manual)

To drive each segment to a different value, the enables (AN[7:0]) and segment values (CA…CG)
must be driven sequentially, at a rapid enough speed that our eyes don't detect the flicker. For
example, to drive display 0 and 1 to the values 3 and 9, we drive CA…CG to display the value 3,
and then drive AN[0] LOW, then we drive CA…CG to display the value 9 and drive AN[1] LOW. If
we refresh each digit about every 2 ms, our eyes can't detect any flicker.

Build HDL module to drive Nexys4 DDR 7-segment displays

Now you will write a Verilog module that drives the eight 7-segment displays on the Nexys4
DDR board. The module declaration is provided in:

 MIPSfpga_Fundamentals\Xilinx\Lab05_7seg\VerilogFiles\mipsfpga_ahb_sevensegtimer.v

The module receives the number to display on each of the eight digits (DISP0[3:0] – DISP7[3:0])
and a signal indicating which of the eight displays are enabled (EN[7:0]). It also receives the 50
MHz clock (clk) and a low-asserted reset signal (resetn) as inputs. The outputs are the 7-

50 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

segment display enables (DISPENOUT[7:0]) and the values of the 7 segments, A-G
(DISPOUT[6:0]). Later in the lab you will connect these outputs through to the top-level module
(mipsfpga_nexys4_ddr) so that they drive the eight display enables (AN[7:0]) and the seven
segment pins (CA…CG).

Your module should drive each enabled digit sequentially about every 2 ms. You will need to
use your 7-segment display decoder that you wrote in the previous section. Note that you could
expand the functionality of this module to include the decimal point (DP) if desired. Test your
hardware in simulation using XSIM and debug as needed.

Adding Seven-Segment Display Functionality to the GPIO AHB-Lite Module

Now that you have written the hardware modules that will write the eight 7-segment displays,
add functionality to the MIPSfpga system to interface with the displays. Your goal is to enable

the user to write to the eight 7-segment displays using sw. Start by doing the following:

1. Assign memory-mapped I/O addresses to the enable signal and each of the eight digits
2. Modify the GPIO module to detect these addresses and store the written data to the

associated memory-mapped I/O registers
3. Connect these registers to the mipsfpga_ahb_sevensegtimer module you just created

To make these changes, you will need to modify the following files (found in the
MIPSfpga_Fundamentals\rtl_up directory):

 mipsfpga_ahb_const.vh

 mipsfpga_ahb_gpio.v

Below is some guidance for each of the above steps.

1. Assign memory-mapped I/O addresses
Assign nine addresses to the seven-segment displays, one for the enable and eight for the value
of each digit, as shown in Table 6. The user will write to these addresses to set the enable and
the digit values.

Table 6. Memory addresses for Nexys4 DDR FPGA 7-segment displays

Virtual address Physical address Signal Name Nexys4 DDR

0xbf80 0010 0x1f80 0010 SEGEN_N[7:0] AN[7:0]

0xbf80 0014 0x1f80 0014 SEG0_N[3:0] Digit 0 value

0xbf80 0018 0x1f80 0018 SEG1_N[3:0] Digit 1 value

0xbf80 001c 0x1f80 001c SEG2_N[3:0] Digit 2 value

0xbf80 0020 0x1f80 0020 SEG3_N[3:0] Digit 3 value

0xbf80 0024 0x1f80 0024 SEG4_N[3:0] Digit 4 value

0xbf80 0028 0x1f80 0028 SEG5_N[3:0] Digit 5 value

0xbf80 002c 0x1f80 002c SEG6_N[3:0] Digit 6 value

0xbf80 0030 0x1f80 0030 SEG7_N[3:0] Digit 7 value

51 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

To define these memory-mapped addresses, modify the mipsfpga_ahb_const.vh Verilog header
file. In Vivado, open Project1. Browse to mipsfpga_ahb_const.vh in the Project Manager
window (as shown in Figure 52), under Design Sources → Verilog Header.

Figure 52. mipsfpga_ahb_const.vh Verilog header file

Define the new memory-mapped I/O addresses for the 7-segment displays as
H_7SEGEN_ADDR, H_7SEG0_ADDR, … H_7SEG7_ADDR. The Address Decoder (ahb_decoder
module) uses the most significant bits of the address to detect which of the three AHB slaves to
enable (the reset RAM, program RAM, or GPIO module). Then, once selected, the GPIO module
uses the lower bits of the address to determine which of its peripherals should be written or
read. Bits 5:2 of the memory-mapped I/O address are saved in another constant: H_*_IONUM,
lower in the mipsfpga_ahb_const.vh file, as shown below:

`define H_LEDR_IONUM (4'h0)

`define H_LEDG_IONUM (4'h1)

`define H_SW_IONUM (4'h2)

`define H_PB_IONUM (4'h3)

For example, the switches are mapped to physical address 0x1f800008, so bits 5:2 are 0x2 (i.e.,
H_SW_IONUM is 4'h2).

Name the I/O numbers for the 7-segment display variables: H_7SEGEN_IONUM,
H_7SEG0_IONUM, etc. For example since the address for the 7-segment enable is 0x1f800010,
H_7SEGEN_IONUM is 0x4.

2. Modify the GPIO module
Now modify the GPIO module to detect the nine memory-mapped I/O addresses you just
defined and write the data (HWDATA) to those registers when the corresponding address is
detected. In Project1 in Vivado, open mipsfpga_ahb_gpio.v. In the module declaration, declare

52 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

and output the enable and segment signals (A-G). Name these signals IO_7SEGEN_N[7:0] and
IO_7SEG_N[6:0], respectively. In a higher-level module, these will drive the enables (AN[7:0])
and segment values (CG…CA) on the Nexys4 DDR board.

You must now create 9 registered values that hold the value of the enables and the values to
display on the eight 7-segment display digits. The user will write to these registers using
memory-mapped I/O. Name the registered signal that holds the enables SEGEN_N[7:0]. Name
the registers that each hold the 4-bit values to display on the eight digit SEG0_N[3:0],
…,SEG7_N[3:0]. Modify the GPIO module so that these registers get written when the correct
address is detected.

3. Connect these registers to the mipsfpga_ahb_sevensegtimer module you just created
Now, within the GPIO module, instantiate and connect the

mipsfpga_ahb_sevensegtimer module that you built earlier in this lab. You will connect
its inputs to the memory-mapped I/O registers (as well as the clock and reset signals) and its
outputs to the 7-segment display signals (IO_7SEGEN_N and IO_7SEG_N).

Connect the 7-Segment Display Signals to the Nexys4 DDR Board

Now you will connect the output signals from the AHB GPIO module through to drive the 7-
segment displays on the Nexys4 DDR board. Feed the output signals from the GPIO module
(IO_7SEGEN_N and IO_7SEG_N) up through the levels of hierarchy until they reach the Nexys4
DDR board (i.e., outputs of the mipsfpga_nexys4_ddr module). To do so, you will need to
modify the following modules:

 mipsfpga_ahb.v

 mipsfpga_sys.v

 mipsfpga_nexys4_ddr.v

In the highest-level module (mipsfpga_nexys4_ddr.v), name the output signals that will drive
the 7-segment display: CA, CB, CC, CD, CE, CF, CG, and AN[7:0]. Recall that CA…CG drive the
segments and AN[7:0] drives the enables.

You will also modify the Xilinx Design Constraint (.xdc) file. Open this file from Project1 (in
Vivado) by expanding Constraints → constrs_1 in the Project Manager window as shown in
Figure 53. Double-click on the mipsfpga_nexys4_ddr.xdc file to open it. The XDC file assigns the
signal names, AN[7:0] and CA – CG, to pins on the Artix-7 FPGA that are physically connected
to the 7-segment display inputs on the Nexys4 DDR board using wire traces.

53 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

Figure 53. Opening Xilinx Design Constraint file

With the .xdc file open in Vivado, search for (ctrl-F) "segment" to find the listing of 7-segment
display outputs, as shown in Figure 53. The information about which pins are connected to the
7-segment displays is already available in the file – it needs only be uncommented. Do so by
deleting the # before each line you'd like to use. For example, signal CA that drives the A
segment of the 7-segment displays connects to pin T10 on the FPGA by the following line:

set_property -dict { PACKAGE_PIN T10 IOSTANDARD LVCMOS33 } [get_ports {

CA }]; #IO_L24N_T3_A00_D16_14 Sch=ca

This pin is connected via a wire trace to the segment A input of the 7-segment displays on the

Nexys4 DDR board. CB should output to the R10 Artix-7 pin, and so on. The signals driving the

anodes of the 7-segment displays (AN[7:0]) are also assigned Artix-7 package pins. Leave the
DP signal is commented out (#) because it is not used.

Near the bottom of the constraints file, add the following output timing constraints for the 7-
segment display signals:

set_output_delay -clock "clk_virt" -min -add_delay 0.000 [get_ports

{AN[*]}]

set_output_delay -clock "clk_virt" -max -add_delay 10.000 [get_ports

{AN[*]}]

set_output_delay -clock "clk_virt" -min -add_delay 0.000 [get_ports {CA}]

set_output_delay -clock "clk_virt" -max -add_delay 10.000 [get_ports {CA}]

set_output_delay -clock "clk_virt" -min -add_delay 0.000 [get_ports {CB}]

set_output_delay -clock "clk_virt" -max -add_delay 10.000 [get_ports {CB}]

set_output_delay -clock "clk_virt" -min -add_delay 0.000 [get_ports {CC}]

set_output_delay -clock "clk_virt" -max -add_delay 10.000 [get_ports {CC}]

set_output_delay -clock "clk_virt" -min -add_delay 0.000 [get_ports {CD}]

54 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

set_output_delay -clock "clk_virt" -max -add_delay 10.000 [get_ports {CD}]

set_output_delay -clock "clk_virt" -min -add_delay 0.000 [get_ports {CE}]

set_output_delay -clock "clk_virt" -max -add_delay 10.000 [get_ports {CE}]

set_output_delay -clock "clk_virt" -min -add_delay 0.000 [get_ports {CF}]

set_output_delay -clock "clk_virt" -max -add_delay 10.000 [get_ports {CF}]

set_output_delay -clock "clk_virt" -min -add_delay 0.000 [get_ports {CG}]

set_output_delay -clock "clk_virt" -max -add_delay 10.000 [get_ports {CG}]

Testing Seven-Segment Display Functionality

Now test the basic functionality of the 7-segment display hardware by writing a simple
assembly program that writes to the 7-segment displays. You will then test your hardware by
simulating this simple program without the bootcode using XSIM, Xilinx's built-in simulator.

Write a simple MIPS assembly program that enables the 7-segment displays and then writes
values to each of the eight digits. Create your program in the following directory:

MIPSfpga_Fundamentals\Xilinx\Lab05_7seg\AssemblyExample

Copy the entire contents of the ReadSwitches directory from Lab 3 to the AssemblyExample
directory as a starting point for your new MIPS assembly program. Modify the main.S file. Then
compile the program (and debug as needed) using make.

Extract Machine Code for Simulation

Now convert the MIPS assembly instructions from this program to machine code in order to
simulate the instructions on the MIPSfpga core. You can use any method you prefer to convert
assembly to 32-bit machine code: by hand, using another simulator (such as QtSpim), extracting
the machine code from the executable generated by Codescape, etc. We show you two ways to
use Codescape to convert MIPS assembly to machine code. For either method, you must first
compile the MIPS assembly code using Codescape (as described in Labs 2-4 and in Section 7.2 of
the MIPSfpga Getting Started Guide). In the first method, you then manually extract the
program's machine code from the executable. In the second method, you use a script to extract
the machine code. For simple programs, the first method is faster.

Method 1: Manually Extract the Machine Code from the Executable

First, we show you how to extract the machine code manually from the executable produced by
the Codescape compiler (gcc). Browse to your assembly program's directory:

 MIPSfpga_Fundamentals\Xilinx\Lab05_7seg\AssemblyExample

After compiling the code using 'make', open FPGA_Ram_dasm.txt or
FPGA_Ram_modelsim.txt, the disassembled text representation of the executable.
FPGA_Ram_modelsim.txt does not include the interleaved higher-level program code, so it is
simpler and easier to read but contains less information. (Note: if those files don't exist, you still
need to compile the program using make.) Search for the main label, which is the beginning of
the user program. Extract these machine instructions and put them in a text file called
ram_reset_init.txt in the MIPSfpga_Fundamentals\Xilinx\Lab05_7seg\ directory.

We will use this file to initialize the contents of the boot RAM, which holds memory addresses
starting at physical address 0x1fc00000. So, when running the simulation, the boot ram will

55 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

initialize its contents with these instructions. And upon reset, MIPSfpga will begin executing the
first instruction. Note that "relocating" code in this manner only works if there are no jump
instructions.

Method 2: Automatically Extract the Machine Code using a Script

We now show you how to use a script to do the same thing that you did manually above. Open
a command shell and change to the MIPSfpga_Fundamentals\Scripts directory. For example if
MIPSfpga_Fundamentals is on the C:\ drive:

cd C:\MIPSfpga_Fundamentals\Scripts

Now run the createMemfiles.bat batch script on the 7-segment display AssemblyExample
program (located in the MIPSfpga_Fundamentals\Xilinx\Lab05_7seg\AssemblyExample folder).
For example, if the MIPSfpga_Fundamentals folder is located on the C:\ drive, type:

createMemfiles.bat C:\MIPSfpga_Fundamentals\Xilinx\Lab05_7seg\AssemblyExample

This script creates files that list the instructions in the boot RAM (ram_reset_init.txt) and the
program RAM (ram_program_init.txt). You can simulate the entire program (boot code plus
program code) using both of these files. However, a full simulation of the boot code and the
program code is unnecessary. For our purposes here, simulating only the program code suffices
to test the added 7-segment display hardware. So, extract the program code only and place it in
the boot RAM so that, upon reset, the program code will begin executing.

This extraction process takes about 10 minutes or more, depending on the speed of your
computer. Once it completes, the prompt will return in the command window. Now browse to
this folder, where the script-generated files are located:

 MIPSfpga_Fundamentals\Xilinx\Lab05_7seg\AssemblyExample\MemoryFiles

The script generated four files:

 ram_reset_init.txt

 ram_program_init.txt

 ram_reset_init.mif

 ram_program_init.mif

The .txt files contain the memory contents of the reset (boot) and program RAMs.
ram_reset_init.txt contains the boot code, instructions starting at physical address 0x1fc00000
(virtual address 0xbfc00000 or 0x9fc00000), the value of the PC at reset. ram_program_init.txt
contains the program instructions starting at physical address 0x00000000 (virtual address
0x80000000). The .mif files are a similar representation of the same memory called memory
initialization files used by some CAD tools.

Open FPGA_Ram_dasm.txt and ram_program_init.txt. In FPGA_Ram_dasm.txt, search for
"80000000:". Code at this address is part of the exception handler, as shown below.

80000000: 3c1b8000 lui k1,0x8000

80000004: 277b1430 addiu k1,k1,5168

56 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

 ...

80000220: 3c1b0000 lui k1,0x0

80000224: 277b0000 addiu k1,k1,0

 ...

In ram_program_init.txt, which describes the program code starting at virtual address
0x80000000 (physical address 0x0), the top of the file lists these instructions:

@0

3c1b8000

277b1430

...

ram_program_init.txt, lists instructions starting at physical address 0x0 (indicated by the @0).
MIPS uses byte-addressable memory, but the 256 KB program memory returns 32-bit words
(i.e., it is organized as 216 x 32 bits). So the memory modules discard the lower 2 bits of the
address on the AHB-Lite bus, essentially dividing the address by 4. Thus physical address
0x0000005c (virtual address 0x8000005c) is at program RAM memory address 0x5c/4 = 0x17.

Further down in the ram_program_init.txt file, notice the following instructions located at
RAM1 address 0x88.

@88

3c1b0000

277b0000

...

These correspond to the instructions starting at 0x80000220 (i.e., 0x80000000 + 0x88*4) in
FPGA_Ram_dasm.txt.

Now, in ram_program_init.txt search for "@1d7". These are the instructions located at
0x80000000 + (0x1d7*4) = 0x8000075c, the starting location of the user's program code. In
FPGA_Ram_dasm.txt, search for "8000075c:" to see all of the program instructions. Now, find
the end of your program code in both FPGA_Ram_dasm.txt and ram_program_init.txt. In the
next step, you will extract this program code (from ram_program_init.txt) and place it in a new
ram_reset_init.txt file, that you will simulate.

Now you will extract the machine code version of your program and relocate it to virtual
address 0xbfc00000, so that your code (instead of the boot code) simulates upon reset. To do
so, create a new file called ram_reset_init.txt that contains the program code (that you just
located in ram_program_init.txt). Place this new file in:

MIPSfpga_Fundamentals\Xilinx\Module05_7seg\ram_reset_init.txt

Remove all of the address directives (@1d7, etc.). With no addresses indicated, the memory
contents default to begin at address 0 relative to the start of the boot code (starting at virtual
address 0xbfc00000).

57 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

You will point the simulation to initialize the reset/boot RAM (RAM0) with the
ram_reset_init.txt file you just created. Note again that we can only relocate code in this
manner if there are no jump instructions.

Simulation

Now you will run the user code in simulation on the MIPSfgpa system to test your new 7-
segment display hardware. Before simulating, you will add your new and modified Verilog files
to the project you created in Lab1.

Open the Vivado project you created in Lab 1, located in
MIPSfpga_Fundamentals/Xilinx/Lab01_Vivado/Project1. Add the 7-segment display decoder
and 7-segment display timer modules that you built earlier in the lab (by selecting Add Sources
under the Project Manager pane in Vivado).

Now, you are ready to simulate your new hardware. In the Project Manager window, scroll
down to and expand Simulation Sources and sim_1. Make sure testbench is bold, indicating that
it is the top-level simulation module, as shown in Figure 54.

Figure 54. testbench as top-level module for simulation

Modify testbench.v to instantiate your modified MIPSfpga system (mipsfpga_sys).

If you added a memory initialization file for simulation in Lab 1, remove it by expanding
Simulation Sources → sim_1 → Text and deleting any existing files (i.e., ram_reset_init.txt) as
shown in Figure 55. Right-click on ram_reset_init.txt and select Remove File from Project and
click OK.

58 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

Figure 55. Remove existing memory definition file

Now add the ram_reset_init.txt file that you just created (located in
MIPSfpga_Fundamentals\Xilinx\Module05_7seg\) as a simulation source. Refer to Lab 1 if
you've forgotten how to do this.

Run the simulation and check that the MIPSfpga system outputs the correct values for the 7-
segment display signals (IO_7SEGEN_N and IO_7SEG_N). If they don't, debug your modules. To
debug, you'll likely want to view signals from lower levels in the hierarchy. Again, refer to Lab 1
instructions if you've forgotten how to do this.

As you're simulating, remember that the timing of displaying each of the 7-segment display
digits is much slower than the rest of the system (~2 ms versus 20 ns cycle time).

Running the Example Assembly Program on the MIPSfpga System

Now that you have simulated and tested your added hardware to support writing values to the
7-segment displays, you are ready to run your MIPS assembly program on the MIPSfpga system
in hardware.

Open a command shell and change to the following directory:

MIPSfgpa_Fundamentals\Scripts\Nexys4_DDR

At the prompt, type:

loadMIPSfpga.bat C:\MIPSfpga_Fundamentals\Xilinx\Lab05_7seg\AssemblyExample

Make sure that your MIPS assembly program operates correctly in hardware. If not, you get
another chance to practice your debugging skills.

Example C Program on the MIPSfpga Core

Now write a simple C program that writes to the 7-segment displays. Compile and debug your
program and then run and test your C program in hardware.

59 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

9. Write a Program Using 7-segment Displays
Now you will write two new C programs to exercise the 7-segment display capabilities:

1. The first program, called SwTo7segHex, should write the hexadecimal value of the 16

switches to the 7-segment displays.

2. The second program, called SwTo7segDec, should write the decimal value of the 16

switches to the 7-segment displays.

When you are done, run, debug, and test your programs on your modified MIPSfpga system.

60 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

Lab 9
Porting MIPSfpga to Other FPGA Boards

61 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

MIPSfpga Lab 9: Porting MIPSfpga to Other FPGA
Boards

Introduction
This lab describes how to port the MIPSfpga system onto other FPGA boards. You may choose

to use a board other than the Nexys4 DDR board because of, for example, wanting a lower-cost

option or having existing availability of other boards.

We will describe how to port the MIPSfpga system to Digilent's Basys3 board and Digilent's

Nexys4 board, which is the predecessor to the Nexys4 DDR board. You may follow similar steps

to port the MIPSfpga system to other boards based on Xilinx FPGAs. Table 7 gives an overview

of the features of the Nexys4 and Basys3 FPGA boards, as well as the Nexys4 DDR board that

we've been using in the prior labs. If desired, the prior labs could have been completed on

either the Nexys4 or Basys3 FPGA boards – or on other FPGA boards as well.

Table 7. FPGA Boards

Board Overall specifications Web Link Cost

Nexys4
DDR

 FPGA: Artix-7 (XC7A100T-

CSG324)
 Amount of block RAM: 607

KB

 # of Logic Cells: 101k

 7-segment displays: 8

 Switches: 16

 Pushbuttons: 5

 LEDs: 16

 PMOD Connectors: 5

http://www.digilentinc
.com/Products/Detail.c
fm?Prod=NEXYS4DDR

$159 (academic),
$320 (non-academic)

Nexys4 Similar to Nexys4 DDR (for
example, all of the above
specifications are the same)

http://www.digilentinc
.com/Products/Detail.c
fm?Prod=NEXYS4

$179 (academic),
$320 (non-academic)

Basys3  FPGA: Artix-7 (XC7A35T-

CPG236)
 Amount of block RAM: 225

KB

 # of Logic Cells: 33k

 7-segment displays: 4

 Switches: 16

http://www.digilentinc
.com/Products/Detail.c
fm?Prod=BASYS3

$79 (academic),
$149 (non-academic)

62 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

 Pushbuttons: 5

 LEDs: 16

 PMOD Connectors: 4

Porting MIPSfpga to Digilent's Basys3 Board

In this section we show you how to port the MIPSfpga system onto Digilent's Basys3 board,

shown in Figure 56.

Figure 56. Digilent's Basys3 Board

As listed in Table 7, the Basys3, like the Nexys4 DDR board, is also built around Xilinx's Artix7

FPGA, however it is a smaller version of the FPGA on the Nexys4 DDR board. The Basys3's Artix7

FPGA has about a third of the logic and memory as the one on the Nexys4 DDR board (225 KB of

block RAM and 33K configurable logic blocks (CLBs) on the Basys3 vs. 607 KB of block RAM and

101K CLBs on the Nexys4 DDR). The MIPSfpga hardware fits easily on either board, however,

the amount of block RAM needs to be reduced in order to fit on the Basys3 board.

63 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

MIPSfpga Modifications for the Basys3 Board

To port the MIPSfpga system to the Basys3 board, we must:

Step 1. Write a wrapper module that maps the MIPSfpga I/O to the Basys3 board I/O

Step 2. Decrease the memory size of the MIPSfpga system to fit on the Basys3 board

Step 3. Add a constraints file that maps the board I/O to the correct FPGA pins

We describe each of these steps in detail and then show how to download the MIPSfpga system

onto the Basys3 board. We also describe how to build a Vivado project and compile the

MIPSfpga system for the Basys3 board.

Step 1. Basys3 Wrapper Module

First, we write a wrapper module that maps the MIPSfpga I/O to the I/O on the Basys3 board.

Browse to the MIPSfpga_Fundamentals\Xilinx\Lab09_PortingMIPSfpga\Basys3 folder and open

the mipsfpga_basys3.v file.

First, observe the mipsfpga_basys3 module inputs and outputs. These signals are the interfaces

to the Basys3 board.

module mipsfpga_basys3(input clk,

 input btnU, btnD, btnL, btnR, btnC,

 input [15:0] sw,

 output [15:0] led,

 inout [5:0] JB

);

clk is the onboard 100 MHz clock. btnU, btnD, btnL, btnR, and btnC are the names of the

up, down, left, right, and center push buttons on the Basys3 board. We use btnC to reset the

processor.

Input signal sw[15:0] are the 16 switches, led[15:0] are the 16 LEDs, and so on. The JB

signals are the PMODB connector pins that connect to the EJTAG signals needed by the Bus

Blaster. Notice that the JB connector is on the upper right of the Basys3 board (see Figure 56)

and on the lower right of the Nexys4 DDR board.

Next, the phase-lock-loop, clk_wiz_0, is instantiated to create the 50 MHz MIPSfpga system

clock from the onboard 100 MHz clock.

 clk_wiz_0 clk_wiz_0(.clk_in1(clk), .clk_out1(clk_out));

The following lines manually connect the tck pin (JB[3]) to an input buffer (IBUF) and then

to a clock buffer (BUFG) to address the problem that the JB[3] pin carries a clock signal but is

64 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

not connected to a clock buffer.

 IBUF IBUF1(.O(tck_in),.I(JB[3]));

 BUFG BUFG1(.O(tck), .I(tck_in));

Finally, the heart of the module is to instantiate the MIPSfpga system (mipsfpga_sys) and

connect it to the Basys3 I/O.

 mipsfpga_sys mipsfpga_sys(

 .SI_Reset_N(~btnC),

 .SI_ClkIn(clk_out),

 .HADDR(),

 .HRDATA(),

 .HWDATA(),

 .HWRITE(),

 .EJ_TRST_N_probe(JB[4]),

 .EJ_TDI(JB[1]),

 .EJ_TDO(JB[2]),

 .EJ_TMS(JB[0]),

 .EJ_TCK(tck),

 .SI_ColdReset_N(JB[5]),

 .EJ_DINT(1'b0),

 .IO_Switch({2'b0,sw}),

 .IO_PB({btnU, btnD, btnL, 1'b0, btnR}),

 .IO_LEDR(led),

 .IO_LEDG()

);

Step 2. Decrease Memory

The Basys3 board only has 225 KB of block RAM instead of the 607 KB of the Nexys4 DDR board.

Thus, the two memory blocks (128 KB for boot RAM and 256 KB for program RAM) will not fit

on the Basys3 board. Luckily, the boot code can fit in 32 KB and we can limit our program needs

to 64 KB. Thus, the total memory need (32 KB + 64 KB = 96 KB) fits on the Basys3 board. The

remaining 225-96 = 129 KB of block RAM can used for other memory needs of the MIPSfpga

system, such as caches.

We reduce the amount of memory by modifying the memory sizes declared in the Verilog

header file. Again, browse to the

MIPSfpga_Fundamentals\Xilinx\Lab09_PortingMIPSfpga\Basys3 directory and open the

mipsfpga_ahb_const.vh file. The size of the reset (boot) RAM address is 13 bits. So the boot

RAM has 213 32-bit words = 215 bytes = 32 KB.

`define H_RAM_RESET_ADDR_WIDTH (13)

The size of the program RAM address is 14 bits. So the program RAM has 214 32-bit words = 216

bytes = 64 KB.

65 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

`define H_RAM_ADDR_WIDTH (14)

Step 3. Basys3 Constraints File

As the last step, we add a constraints file that maps the wrapper module's (mipsfpga_basys3)

I/O signal names to the correct FPGA pins on the Basys3 FPGA board. Again, browse to the

MIPSfpga_Fundamentals\Xilinx\Lab09_PortingMIPSfpga\Basys3 directory and open the

mipsfpga_basys3.xdc Xilinx Design Constraints file. This file maps the FPGA pins to the inputs

and outputs of the mipsfpga_basys3 wrapper module. For example, the following line maps the

input clk to FPGA package pin W5, which is fed by the 100 MHz clock (period = 10 ns) on the

Basys3 board.

set_property PACKAGE_PIN W5 [get_ports clk]

set_property IOSTANDARD LVCMOS33 [get_ports clk]

create_clock -add -name sys_clk_pin -period 10.00 -waveform {0 5}

[get_ports clk]

The following line addresses the issue that the tck pin of the EJTAG interface is not connected

to an FPGA pin with a clock buffer.

set_property CLOCK_DEDICATED_ROUTE FALSE [get_nets tck_in]

The lines below map the switch inputs (sw[15:0]) to the FPGA pins that are physically wired

to the switches on the Basys3 board. For example sw[0] is connected to the Artix7 package

pin V17, sw[1] to pin W16, and so forth. They all use LVCMOS 3.3V signal levels.

Switches

set_property PACKAGE_PIN V17 [get_ports {sw[0]}]

 set_property IOSTANDARD LVCMOS33 [get_ports {sw[0]}]

set_property PACKAGE_PIN V16 [get_ports {sw[1]}]

 set_property IOSTANDARD LVCMOS33 [get_ports {sw[1]}]

set_property PACKAGE_PIN W16 [get_ports {sw[2]}]

...

The timing constraints for FPGA I/O are specified at the bottom of the file.

Loading the MIPSfpga System onto the Basys3 Board
A pre-compiled bitfile called mipsfpga_basys3.bit contains the MIPSfpga system targeted to the

Basys3 board. It is provided in this directory:

MIPSfpga_Fundamentals\Xilinx\Lab09_PortingMIPSfpga\Basys3

Open Vivado and load the bitfile onto the Basys3 board. Press the center pushbutton (BTNC) on

66 | P a g e MIPSfpga Workshop Exercise © Imagination Technologies 2016

the Basys3 board to reset the processor. You should now see the LEDs display incremented

values. To use Codescape and the Bus Blaster probe to program the MIPSfpga core, connect the

Bus Blaster probe to the PMOD B connector at the top right of the board (labeled JB). Follow

the same instructions as provided in previous labs (see Lab 2, for example) to download and

debug programs on the MIPSfpga system running on the Basys3 board.

Setting up a Vivado Project for MIPSfpga on the Basys3 Board
Use similar steps to those described in Lab 1 to set up a Vivado project targeted to the Artix7 on

the Basys3 board. Before setting up the project, make a copy of the

MIPSfpga_Fundamentals\rtl_up directory and name the copy rtl_up_basys3. Copy the

mipsfpga_basys3.v and mipsfpga_ahb_const.vh files to the rtl_up_basys3 folder.

Now open Vivado and create a new project. Add all the files in the rtl_up_basys3 folder as

source files. Add mipsfpga_basys3.xdc from the

MIPSfpga_Fundamentals\Xilinx\Lab09_PortingMIPSfpga\Basys3 folder as the constraints file.

You will also need to add a 50 MHz PLL (see Lab 1 for instructions).The project target device for

the Basys3 board is the xc7a35tcpg236-1 Artix7 FPGA. After the project is set up, compile,

synthesize, and layout the design by generating a bitfile for the project as described in Lab 1.

MIPSfpga on the Nexys4 Board
Some universities or laboratories may have legacy Nexys4 boards, the predecessors to the

Nexys4 DDR board. We provide the wrapper file and Xilinx Design Constraint file for the Nexys4

board for your convenience. They are located in this directory:

MIPSfpga_Fundamentals\Xilinx\Lab09_PortingMIPSfpga\Nexys4

The target Artix-7 FPGA is the same as the one on the Nexys4 DDR board: xc7a100tcsg324-1. A

precompiled bitfile (mipsfpga_nexys4.bit) is also provided in that directory.

Other Xilinx FPGAs and FPGA Boards
You may follow the same methods described here to target different FPGA boards and Xilinx

FPGAs. Specifically, you will need to write a wrapper module, include the board-specific Xilinx

Design Constraints (.xdc) file, and possibly modify the amount of memory used by the MIPSfpga

system. Some FPGAs may be too small for the MIPSfpga system to fit.

